Introduction to Econometrics Chapter 6

Ezequiel Uriel Jiménez University of Valencia

Valencia, September 2013

6 Relaxing the assumptions in the linear classical model

- 6.1 Relaxing the assumptions in the linear classical model: an overview
- 6.2 Misspecification
- 6.3 Multicollinearity
- 6.4 Normality test
- 6.5 Heteroskedasticity
- 6.6 Autocorrelation
- Exercises
- Appendix

6.2 Misspecification

6 Relaxing the assumptions in the linear classical model [3]

TABLE 6.1. Summary of bias in $\tilde{\beta}_{\gamma}$ when x_2 is omitted in estimating equation.

	$Corr(x_2, x_3) > 0$	$Corr(x_2, x_3) < 0$
β3>0	Positive bias	Negative bias
β3<0	Negative bias	Positive bias

6.2 Misspecification

EXAMPLE 6.1 Misspecification in a model for determination of wages (file wage06sp)

Initial model

$$wage = \beta_1 + \beta_2 educ + \beta_3 tenure + u$$

$$\widetilde{wage_i} = 4.679 + \underbrace{0.681}_{(0.146)} educ_i + \underbrace{0.293}_{(0.071)} tenure_i$$
$$R_{init}^2 = 0.249 \quad n = 150$$

Augmented model

$$wage = \beta_1 + \beta_2 educ + \beta_3 tenure + \alpha_1 \widehat{wage}^2 + \alpha_1 \widehat{wage}^3 + u$$
$$R_{augm}^2 = 0.289$$

$$F = \frac{(R_{augm}^2 - R_{init}^2) / r}{(1 - R_{augm}^2) / (n - h)} = 4.18$$

6.3 Multicollinearity

EXAMPLE 6.2 Analyzing multicollinearity in the case of labor absenteeism (file absent)

TABLE 6.2. Tolerance and VIF.

	Collinearity statistics		
	ToleranceVIF		
age	0.2346	42.634	
tenure	0.2104	47.532	
wage	0.7891	12.673	

6.3 Multicollinearity

EXAMPLE 6.3 Analyzing the multicollinearity of factors determining time devoted to housework (file timuse03)

 $houswork = \beta_1 + \beta_2 educ + \beta_3 hhinc + \beta_4 age + \beta_5 paidwork + u$ $\kappa = \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} = \sqrt{\frac{542.14}{7.06E - 06}} = 8782$

TABLE 6.3. Eigenvalues and variance decomposition proportions.

	-							
Eigenvalues	7.03E-06	0.000498	0.025701	1.861396	542.1400			
Variance d	Variance decomposition proportions							
	Associated Eigenvalue							
Variable	1	2	3	4	5			
С	0.999	995 4.72E	-06 8.36E-	09 1.23E-13	3 1.90E-15			
EDUC	0.295	742 0.704	216 4.22E-	05 2.32E-09) 3.72E-11			
HHINC	0.064	857 0.385	022 0.2090	16 0.100193	3 0.240913			
AGE	0.651	909 0.084	285 0.2638	05 5.85E-07	7 1.86E-08			
PAIDWORK	0.015	405 0.031	823 0.0071	78 0.945516	6 7.80E-05			

6.4 Normality test

EXAMPLE 6.4 Is the hypothesis of normality acceptable in the model to analyze the efficiency of the Madrid Stock Exchange? (file bolmadef)

n=247

TABLE 6.4. Normality test in the model on the Madrid Stock Exchange.

skewness coefficient	kurtosis coefficient	Bera and Jarque statistic
-0.0421	4.4268	21.0232

FIGURE 6.1. Scatter diagram corresponding to a model with homoskedastic disturbances.

FIGURE 6.2. Scatter diagram corresponding to a model with heteroskedastic disturbances.

EXAMPLE 6.5 Application of the Breusch-Pagan-Godfrey test

i	hostel	inc
1	17	500
2	24	700
3	7	250
4	17	430
5	31	810
6	3	200
7	8	300
8	42	760
9	30	650
10	9	320

TABLE 6.5. Hostel and inc data.

Step 1. Applying OLS to the model, $hostel = \beta_1 + \beta_2 inc + u$

using data from table 6.5, the following estimated model is obtained:

 $\widehat{hostel_i} = -7.427 + 0.0533 inc_i$

The residuals corresponding to this fitted model appear in table 6.6.

EXAMPLE 6.5 Application of the Breusch-Pagan-Godfrey test. (Cont.)

i	1	2	3	4	5	6	7	8	9	10
\hat{u}_i	-2.226	-5.888	1.1	1.505	-4.751	-0.234	-0.565	8.913	2.777	-0.631

TABLE 6.6. Residuals of the regression of hostel on inc.

Step 2. The auxiliary regression

$$\hat{u}_i^2 = \alpha_1 + \alpha_2 inc_i + \eta_i$$
$$\hat{u}_i^2 = -23.93 + 0.0799 inc \qquad R^2 = 0.5045$$

Step 3. The BPG statistics is:

$$BPG = nR_{ar}^2 = 10(0.56) = 5.05$$

Step 4. Given that $\chi_1^{2(0.05)} = 3.84$, the null hypothesis of homoskedasticity is rejected for a significance level of 5%, but not for the significance level of 1%.

6 Relaxing the assumptions in the linear classical model [10]

EXAMPLE 6.6 Application of the *White* test

Step 1. This step is the same as in the Breusch-Pagan-Godfrey test.

Step 2. The regressors of the auxiliary regression will be

$$\psi_{1i} = 1 \quad \forall i$$

$$\psi_{2i} = 1 \times inc_i$$

$$\psi_{3i} = inc_i^2$$

$$\hat{u}_i^2 = \alpha_1 + \alpha_2 inc_i + \alpha_3 inc_i^2 + \eta_i$$

$$\hat{u}_i^2 = 14.29 - 0.10inc_i + 0.00018inc_i^2 \qquad R^2 = 0.56$$

Step 3. The W statistic:

$$W = nR^2 = 10(0.56) = 5.60$$

Step 4. Given that $\chi_2^{2(0.10)} = 4.61$, the null hypothesis of homoskedasticity is rejected for a 10% significance level because $W = nR^2 > 4.61$, but not for significance levels of 5% and 1%.

EXAMPLE 6.7 Heteroskedasticity tests in models explaining the market value of the Spanish banks (file bolmad95)

Heteroskedasticity in the linear model

 $\widehat{marktval} = 29.42 + 1.219 bookval$ $marktval = \beta_1 + \beta_2 bookval + u$ n = 20(30.85)(0.127)400 350 value 300 **Residuals in absolute** 250 200 150 100 300 40 700 bookval

GRAPHIC 6.1. Scatter plot between the residuals in absolute value and the variable bookval in the linear model.

 $BPG = nR_{ar}^2 = 20 \times 0.5220 = 10.44$

As $\chi_1^{2(0.01)} = 6.64 < 10.44$, the null hypothesis of homoskedasticity is rejected for a significance level of 1%, and therefore for $\alpha = 0.05$ and for $\alpha = 0.10.1$

$$W = nR_{ar}^2 = 20 \times 0.6017 = 12.03$$

As $\chi_2^{2(0.01)}$ =9.21<12.03, the null hypothesis of homoskedasticity is rejected for a significance level of 1%.

EXAMPLE 6.7 Heteroskedasticity tests in models explaining the market value of the Spanish banks (Cont.)

Heteroskedasticity in the log-log model

GRAPHIC 6.2. Scatter plot between the residuals in absolute value and the variable *bookval* in the log-log model.

TABLE 6.7. Tests of heteroskedasticity on the log-log model to explain the market value of Spanish banks.

Test	Statistic	Table values
Breusch-Pagan	$BP = nR_{ra}^2 = 1.05$	$\chi_2^{2(0.10)} = 4.61$
White	$W = nR_{ra}^2 = 2.64$	$\chi_2^{2(0.10)} = 4.61$

Relaxing the assumptions in the linear classical model 0 [13]

EXAMPLE 6.8 Is there heteroskedasticity in demand of hostel services? (file hostel)

 $\ln(hostel) = \beta_1 + \beta_2 \ln(inc) + \beta_3 secstud + \beta_4 terstud + \beta_5 hhsize + u$ $\widehat{\ln(hostel)}_{i} = -\underbrace{16.37}_{(2.26)} + \underbrace{2.732}_{(0.324)} \ln(inc)_{i} + \underbrace{1.398}_{(0.258)} secstud_{i} + \underbrace{2.972}_{(0.333)} terstud_{i} - \underbrace{0.444}_{(0.088)} hhsize_{i}$ $R^2 = 0.921$ n = 401.6 1.4 Residuals in absolute value 1.2 1 0.8 0.6 0.4 0.2 7.4 7.8 7.2 7.6 ln(inc)

GRAPHIC 6.3. Scatter plot between the residuals in absolute value and the variable ln(*inc*) in the hostel model.

Test	Statistic	Table values		
Breusch-Pagan- Godfrey	$BPG = nR_{ra}^2 = 7.83$	$\chi_2^{2(0.05)}$ =5.99		
White	$W = nR_{ra}^2 = 12.24$	$\chi_2^{2(0.01)}$ =9.21		

EXAMPLE 6.9 Heteroskedasticity consistent standard errors in the models explaining the market value of Spanish banks (Continuation of example 6.7) (file bolmad95)

Non consistent

marktval = 29.42 + 1.219 bookval

 $\overline{\ln(marktval)} = 0.676 + 0.9384 \ln(bookval)$

White procedure

marktval = 29.42 + 1.219 bookval

 $\overline{\ln(marktval)} = 0.676 + 0.9384 \ln(bookval)$

EXAMPLE 6.10 Application of weighted least squares in the demand of hotel services (Continuation of example 6.8) (file hostel)

 $\begin{aligned} \widehat{|\hat{u}_i|} &= 0.0239 + 0.0003 inc \\ \widehat{|\hat{u}_i|} &= -0.4198 + 0.0235 \sqrt{inc} \\ \widehat{|\hat{u}_i|} &= -0.4198 + 0.0235 \sqrt{inc} \\ \widehat{|\hat{u}_i|} &= 0.8857 - 532.1 \frac{1}{inc} \\ \widehat{|\hat{u}_i|} &= 0.8857 - 532.1 \frac{1}{inc} \\ \widehat{|\hat{u}_i|} &= -2.7033 + 0.4389 \ln(inc) \\ \widehat{|\hat{u}_i|} &= -2.7033 + 0.4389 \ln(inc) \\ \end{aligned}$

WLS estimation

$$\ln(hostel)_{i} = -16.21 + 2.709 \ln(inc)_{i} + 1.401 secstud_{i} + 2.982 terstud_{i} - 0.445 hhsize_{i}$$
$$R^{2} = 0.914 \quad n = 40$$

6 Relaxing the assumptions in the linear classical model [16]

FIGURE 6.3. Plot of non-autocorrelated disturbances.

time

FIGURE 6.4. Plot of positive autocorrelated disturbances.

FIGURE 6.5. Plot of negative autocorrelated disturbances.

FIGURE 6.6. Autocorrelated disturbances due to a specification bias.

[19]

EXAMPLE 6.11 Autocorrelation in the model to determine the efficiency of the Madrid Stock Exchange (file bolmadef)

 d_L =1.664; d_U =1.684

Since $DW=2.04>d_U$, we do not reject the null hypothesis that the disturbances are not autocorrelated for a significance level of $\alpha = 0.01$, i.e. of 1%.

GRAPHIC 6.4. Standardized residuals in the estimation of the model to determine the efficiency of the Madrid Stock Exchange.

EXAMPLE 6.12 Autocorrelation in the model for the demand for fish (file fishdem)

For n=28 and k'=3, and for a significance level of 1%:

 $d_L=0.969;$ $d_U=1.415$

Since $d_L < 1.202 < d_{U'}$ there is not enough evidence to accept the null hypothesis, or to reject it.

GRAPHIC 6.5. Standardized residuals in the model on the demand for fish.

EXAMPLE 6.13 Autocorrelation in the case of Lydia E. Pinkham (file pinkham)

$$h = \hat{\rho} \sqrt{\frac{n}{1 - n \widehat{\operatorname{var}}(\hat{\beta}_j)}} = \left[1 - \frac{d}{2}\right] \sqrt{\frac{n}{1 - n \widehat{\operatorname{var}}(\hat{\beta}_j)}} = \left[1 - \frac{1.2012}{2}\right] \sqrt{\frac{53}{1 - 53 \times 0.0814^2}} = 3.61$$

Given this value of *h*, the null hypothesis of no autocorrelation is rejected for α =0.01 or, even, for α =0.001, according to the table of the normal distribution.

GRAPHIC 6.6. Standardized residuals in the estimation of the model of the Lydia E. Pinkham case.

EXAMPLE 6.14 Autocorrelation in a model to explain the expenditures of residents abroad (file qnatacsp)

 $\widehat{\ln(turimp_t)} = -17.31 + 2.0155 \ln(gdp_t)$ $R^2 = 0.531 \qquad DW = 2.055 \qquad n = 49$

GRAPHIC 6.7. Standardized residuals in the estimation of the model explaining the expenditures of residents abroad.

For a *AR*(4) scheme, is equal to *BG* =*n* R_{ar}^2 =36.35. Given this value of *BG*, the null hypothesis of no autocorrelation is rejected for α =0.01, since $\chi_5^{2(\alpha)}$ =15.09.

6 Relaxing the assumptions in the linear classical model [23]

6.6.4 HAC standard errors

EXAMPLE 6.15 *HAC* standard errors in the case of Lydia E. Pinkham (Continuation of example 6.13) (file pinkham)

TABLE 6.9.The *t* statistics, conventional and *HAC*, in the case of Lydia E. Pinkham.

regressor	t conventional	t HAC	ratio
intercept	2.644007	1.779151	1.49
advexp	3.928965	5.723763	0.69
sales (-1)	7.45915	6.9457	1.07
<i>d</i> 1	-1.499025	-1.502571	1
<i>d</i> 2	3.225871	2.274312	1.42
<i>d</i> 3	-3.019932	-2.658912	1.14